If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+16t+23
We move all terms to the left:
0-(-16t^2+16t+23)=0
We add all the numbers together, and all the variables
-(-16t^2+16t+23)=0
We get rid of parentheses
16t^2-16t-23=0
a = 16; b = -16; c = -23;
Δ = b2-4ac
Δ = -162-4·16·(-23)
Δ = 1728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1728}=\sqrt{576*3}=\sqrt{576}*\sqrt{3}=24\sqrt{3}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-24\sqrt{3}}{2*16}=\frac{16-24\sqrt{3}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+24\sqrt{3}}{2*16}=\frac{16+24\sqrt{3}}{32} $
| y+90+111+(y+17)=360 | | 3a+25=73 | | 0=-16t^+16t+23 | | 5x+21/5=25 | | 125+125+2x+2x+90=540 | | 3x-9=6x-24 | | 8(x−6)+9=7x−6 | | 6x+13=2x+57 | | 1a-6=5a-10 | | x+14=2x-7 | | 6(11/4+b)=10 | | 5x-10=-9x+18 | | 7(v–4)=3v+72 | | 20c+-19c+c=18 | | 29+2x=2(−x+5)−13 | | y=0.25×+8 | | 2x+13=3x3 | | 8y-24=6y+6 | | 2x+7+4x-7=90 | | 5(1‐4b)=65 | | 1x-23=4x+1 | | 5x+3=2x+15 | | 88+3x=50+5x | | 6n+9=10n+4 | | 2x+0.3+4x-0.9=90 | | 14.4(x+18.5)=286.56 | | 5x28=15x-62 | | 46+4x=2x+76 | | X^2+Y^2+20y+10=0 | | (X+X)+2x=180 | | 8x-4=7x+15 | | 35+5x=8x-1 |